Rendezvous of Distance-Aware Mobile Agents in Unknown Graphs
نویسندگان
چکیده
We study the problem of rendezvous of two mobile agents starting at distinct locations in an unknown graph. The agents have distinct labels and walk in synchronous steps. However the graph is unlabelled and the agents have no means of marking the nodes of the graph and cannot communicate with or see each other until they meet at a node. When the graph is very large we want the time to rendezvous to be independent of the graph size and to depend only on the initial distance between the agents and some local parameters such as the degree of the vertices, and the size of the agent’s label. It is well known that even for simple graphs of degree ∆, the rendezvous time can be exponential in ∆ in the worst case. In this paper, we introduce a new version of the rendezvous problem where the agents are equipped with a device that measures its distance to the other agent after every step. We show that these distance-aware agents are able to rendezvous in any unknown graph, in time polynomial in all the local parameters such the degree of the nodes, the initial distance D and the size of the smaller of the two agent labels l = min(l1, l2). Our algorithm has a time complexity of O(∆(D + log l)) and we show an almost matching lower bound of Ω(∆(D + log l/ log∆)) on the time complexity of any rendezvous algorithm in our scenario. Further, this lower bound extends existing lower bounds for the general rendezvous problem without distance awareness.
منابع مشابه
Asynchronous Deterministic Rendezvous in Graphs
Two mobile agents (robots) having distinct labels and located in nodes of an unknown anonymous connected graph, have to meet. We consider the asynchronous version of this well-studied rendezvous problem and we seek fast deterministic algorithms for it. Since in the asynchronous setting meeting at a node, which is normally required in rendezvous, is in general impossible, we relax the demand by ...
متن کاملMultiple Agents RendezVous in a Ring in Spite of a Black Hole
The Rendezvous of anonymous mobile agents in a anonymous network is an intensively studied problem; it calls for k anonymous, mobile agents to gather in the same site. We study this problem when in the network there is a black hole: a stationary process located at a node that destroys any incoming agent without leaving any trace. The presence of the black hole makes it clearly impossible for al...
متن کاملPolynomial Deterministic Rendezvous in Arbitrary Graphs
The rendezvous problem in graphs has been extensively studied in the literature, mainly using a randomized approach. Two mobile agents have to meet at some node of a connected graph. We study deterministic algorithms for this problem, assuming that agents have distinct identifiers and are located in nodes of an unknown anonymous connected graph. Startup times of the agents are arbitrarily decid...
متن کاملSynchronous Rendezvous for Location-Aware Agents
We study rendezvous of two anonymous agents, where each agent knows its own initial position in the environment. Their task is to meet each other as quickly as possible. The time of the rendezvous is measured by the number of synchronous rounds that agents need to use in the worst case in order to meet. In each round, an agent may make a simple move or it may stay motionless. We consider two ty...
متن کاملRendezvous of Mobile Agents in Directed Graphs
We study the problem of gathering at the same location two mobile agents that are dispersed in an unknown and unlabeled environment. This problem called Rendezvous, is a fundamental task in distributed coordination among autonomous entities. Most previous studies on the subject model the environment as an undirected graph and the solution techniques rely heavily on the fact that an agent can ba...
متن کامل